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A model of infusion-induced swelling in the brain is presented, in which gray and white 
matter are treated as poroelastic media. The distributions of interstitial pressure, flow, and 
volume are derived for steady-state and transient infusion protocols. A significant percentage 
increase in interstitial volume is predicted near the injection site, despite only a modest 
increase in tissue-averaged fluid content there. The model also can be used to estimate 
mechanical parameters of brain tissue, such as its hydraulic permeability, shear modulus, 
and Lame constant. A solute transport equation that incorporates tissue swelling is also 
presented. This work suggests that knowing the distribution of swelling induced by infusion 
is a prerequisite to describing interstitial transport of solutes. o 19% Academic Pw, IIK. 

INTRODUCTION 

It was proposed recently that infusing chemotherapeutic agents into the inter- 
stitium of the brain may enhance their efficacy [l]. This suggestion raises interesting 
questions: Can interstitial solute concentration be predicted in gray or white matter 
during infusion? How does the therapeutic benefit depend on infusion pressure, 
flow rate, or the material properties of brain tissue? Before addressing these 
questions we must understand a more fundamental process. Infusion induces tissue 
swelling. Swelling alters interstitial solute transport. 

For the purpose of describing infusions, models of solute transport within ex- 
tracellular spaces do not describe tissue mechanics adequately. For example, the 
interstitial transport models of Taylor [2,3] and Nicholson [4] do not explicitly 
satisfy Newton’s second and third laws of motion. Conversely, models of brain 
mechanics that do satisfy F = m a and that contain mechanical boundary con- 
ditions typically do not incorporate solute transport equations [5-81. Here, we 
synthesize the viewpoints of chemical and mechanical engineers, coupling tissue 
swelling with solute transport. 

To describe infusion-induced swelling, we use an established model of consol- 
idation, Biot’s equations [9,10], to derive analytical expressions for the distribution 
of tissue displacement, interstitial pressure, flow, and volume in gray and white 
matter following steady-state and transient infusion from a spherical cavity. We 
then describe transport of an infused solute in this swelling tissue. No free 
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parameters are used; material parameters are taken from published data whenever 
possible. 

In Section 1, the Biot model of consolidation is derived from basic principles; 
in Section 2, it is adapted to describe infusion into an infinite isotropic medium. 
Sections 3-7 contain analytical solutions for interstitial pressure, fluid velocity, 
and extracellular fraction during steady-state and transient infusion into brain 
tissue. Section 8 describes how tissue swelling induced by infusion can be incor- 
porated into a solute transport equation. 
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NOMENCLATURE 

Radial distance 
Radius of spherical cavity 
Radius of tissue sample 
Time 
Tissue displacement vector 
Interstitial velocity vector 
Effective stress tensor 
Network strain tensor 
Network dilatation 
Interstitial pore fluid pressure 
Identity tensor 
Infusion pressure 
Volume flow rate 
Interstitial fluid volume fraction 
Elastic shear modulus (at P = 0) 
Lame constant (at P = 0) 
Poisson ratio (at P = 0) 
Hydraulic conductivity (permeability) 
Network consolidation constant 
Consolidation time constant 
Advective time constant 
Diffusive time constant 
Interstitial solute concentration 
Spefic tissue compliance 
Diffusivity 
Hydraulic input resistance 
Undeformed tissue volume 
Deformed tissue volume 
Undeformed pore volume 
Deformed pore volume 
Rate of production of solute 
Rate of removal of solute 

(dynes/cm2) 
(dimensionless) 
(dimensionless) 
(dynes/cm2) 
(dimensionless) 

(dimensionless) 

(dimensionless) 
(cml/dynes-see) 

I”:““’ set 

(moje/cm’) 
~;My$ 
cm set 

(dynes-set/cm’) 

(cm3> 

N. B.: P = 0 corresponds to ambient CSF pressure 
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THEORY 

1. Biot’s Consolidation Model 
Since M. A. Biot proposed a three-dimensional continuum model of soil con- 

solidation [9-141, consolidation models have been used widely to predict the 
mechanics of artery wall [15-171, bone [18], brain [5-S], cartilage [19], synthetic 
hydrogels [20,21], and rocks [22]. Biot’s model of consolidation [9] is used here 
to describe the dynamic response of brain tissue to fluid infusion. 

Brain tissue is modeled as a fluid-saturated, homogeneous poroelastic medium- 
an elastic network with communicating, fluid-filled pores [5-81. The model contains 
a linear constitutive law of the elastic network, Darcy’s law of fluid flow in a 
porous medium, and the equations of conservation of mass and momentum as 
applied to the network and the interstitial fluid. 

The tissue, which is composed of interstitial fluid, elastic fibers, and cells is 
assumed to be compressible and isotropic. It obeys a linear constitutive law [12], 

r = AGE + he1 - PI. (l-1) 

In Eq. (1. l), r is the Terzaghi or effective stress tensor [23,24] of tissue, G and 
X are the Lame constants of the elastic network, P is the pore fluid pressure, and 
I is the identity tensor. The network dilatation, e, is the divergence of the network 
displacement vector, u: 

e = Tr (e) = V . u. (1.2) 

The infinitesimal network strain tensor, E, is the symmetric part of the gradient 
of the displacement vector: 

E = ; (V u + (V U)T). (1.3) 

Above, the superscript “T” in Eq. (1.3) and “Tr” in Eq. (1.2) signify the transpose 
and trace operations, respectively. 

It is assumed that the infusate has the same ionic composition and osmolarity 
as CSF. Nevertheless, osmotic pressure can be incorporated naturally into Eq. 
(1.1) by including it as an additional isotropic pressure [25], and so can the isotropic 
chemical stress caused by variations in local ionic strength or pH [25]. 

Since inertia is negligible [20], the three equations of mechanical equilibrium 
are given by 

v-7 =o. (1.4) 

Substituting the constitutive law, Eq. (1. l), and the definition of strain, Eq. (1.3), 
into the equilibrium equation, Eq. (1.4), we obtain Navier’s equations for the 
network displacement proposed by Biot [12]: 

GV%+(G+A)V(Vu)-VP=O. (1.5) 

Taking the divergence of Eq. (1.5), we obtain 

GVV%r+(G+A)VV(Vu)-VVP =O. (l-6) 

Recalling that V . V = V* and using Eq. (1.2), 
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V * Vu = V . V (V * u) = V2e, 

we relate the tissue pressure and dilatation [12]: 

(2G + A) V2e = V2P. 

(1.7) 

(1.8) 

Biot calls the coefficient of V2e in Eq. (1.8) “l/a” [12], but expresses it in terms 
of G and v, the Poisson ratio.’ 

It is assumed that both the constituents of the network and the fluid are in- 
dividually incompressible in brain tissue [5-g] so the equation of conservation of 
mass for the tissue therefore becomes 

v- (1-J$+fV 
( 

) =o=v *(g+f(v-$)), (1.9) 

where f is the volume fraction of fluid (pores) in the undeformed tissue, and V 
is the velocity of the interstitial fluid measured in the laboratory frame. In the 
linear theory, f is constant, so that 

(1-f)$+fW=O. (1.10) 

The relative velocities of the interstitial fluid and network are related to the 
pore pressure gradient using Darcy’s law [13], 

f( ) 
v-2 = -KVp, (1.11) 

where the permeability, K, is assumed constant. Equation (1.11) implies that a 
gradient in pore pressure accompanies a relative velocity between the interstitial 
fluid and the network. One can include osmotic pressure in Darcy’s law if necessary 
[25]. Taking the divergence of Eq. (l.ll), 

f( ) 
v . v - $ = - K v=P, (1.12) 

and using Eqs. (1.8), (l.lO), and (1.12), we derive the consolidation equation of 
Biot [12], 

ae 
- = K (2G + A) v2e. 
at 

(1.13) 

Biot called the factor K (2G + A) the coefficient of consolidation,2 c. It is the 
diffusivity of dilatation, and is both analogous to and has the same units as a 
chemical or thermal diffusivity. 

In this study, Darcy’s law and the equations of conservation of mass and mo- 
mentum, Eqs. (1. ll), (l.lO), and (1.5), are solved simultaneously for the tissue 
displacement, fluid velocity, and pore pressure, using boundary and initial con- 

’ Biot actually used “l/a = 2G(l - v)/(l - 2~)” [12], where v is the Poisson ratio of the 
consolidated poroelastic material; but it is easy to show that “l/u” = (2G + h) by using the definition 
Y = h/2(G + A), where A is the Lamd constant. 

* Biot used the definition c = K/a; however, it is easy to show that c = 42G + A) by using v = 
A/2(G + A). 
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FIG. 1. The spherical pore of radius n within an infinite poroelastic tissue sample. During infusion, 
the tissue swells and cavity radius increases by u,(a). 

ditions appropriate for a particular fluid-infusion protocol. Once the displacement 
is known, the tissue swelling and interstitial volumes are calculated. 

Capillary filtration is ignored in this model because estimates of permeability 
[26] suggest that loss through filtration is several orders of magnitude smaller than 
the volume flow rate of the i&sate [l]. The blood-brain barrier also prevents 
the infused chemotherapeutic agents from being absorbed and cleared through 
the vasculature [l]. Since brain tissue contains no lymphatics, we can ignore this 
clearance mechanism as well. 

Although it has been assumed that both the network and the interstitial fluid 
are individually incompressible [5-81, the vasculature is a third compressible phase 
that may add compliance to brain tissue. In principle, the vasculature can be 
incorporated into this model by treating it as a though it were a compressible gas 
[9]. To mitigate the effect of vascular compliance, we can use material properties 
measured at mean capillary pressure. 

2. Consolidation in an Infinite, Isotropic Medium 

For injection into a homogeneous, isotropic poroelastic medium, the equations 
take on a simple form. As is shown in Fig. 1, fluid is assumed to be infused in 
either gray or white matter through a spherical cavity of radius a in the unstressed 
state. We assume that the applied stress at the tissue/cavity boundary is radially 
symmetric and that the displacement, fluid velocity, and strain fields are as well. 
Therefore, shear strains all vanish, i.e., E,+ = cdr = cd0 = eB1 = E,~ = sor = 
0. Only the diagonal elements of the network strain tensor, E, survive: 

(2.1) 
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where U, is the network displacement in the radial direction, and E,, E++, and co0 
are the normal strains in the radial, longitudinal, and latitudinal coordinate di- 
rections, respectively. The dilatation, e, is given by their sum (as in Eq. (2.1)) 

(2.2) 

The equation of conservation of momentum in the radial direction, Navier’s 
equation (1.5), reduces to 

(ZG+b);(;$(r*u,)) =(ZG+X)$=$ 

and its divergence, Eq. (1.6), is given by 

(2G + h);;(r’$ = $-f(r*$). 

The equation of conservation of mass, Eq. (1. lo), is now 

1 a 
-- r 
r* ar ( ( 

* (1-#$+fv, 
1) 

=o. 

Darcy’s law of fluid flow, Eq. (l.ll), becomes 

The consolidation equation, (1.13), is given by 

P-3) 

(2.5) 

(2.7) 

3. Boundary and Initial Conditions 
Specifying boundary conditions for poroelastic medium is a source of confusion. 

It arises from attempting to reconcile the microcontinuum (pore length scale) and 
macrocontinuum (tissue length scale) descriptions. Although at an interface, the 
traction must be continuous, typically we know the hydrostatic pressure or the 
contact stress there. Generally, we apply separate conditions on the fluid and 
solid phases. We use a self-consistent system proposed by Kenyon [27]. For the 
elastic portion, the contact stress or displacement is specified. For the interstitial 
fluid, the pore pressure, its gradient, or some linear combination is specified. 

From the constitutive law, the contact stress on the network is given as 

(3.1) 

With the reference CSF pressure set to zero at a boundary, the interstitial 
pressure also vanishes: 

P(r) = 0. (3.2) 

At an impermeable boundary the interstitial pressure gradient would be set to 
zero, i.e., 
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At the infusion site, the tissue has been cored out, creating a sphere of radius 
Q. Fluid can be delivered to this cavity from a constant pressure or a constant 
flow source. In this study, it is assumed that there is no pressure drop within the 
cavity or at the interface with the tissue. 

In a transient infusion problem, the initial deformation is isovolumic. Moreover, 
at the initial instant of the imposition of the flow or pressure, there is no redis- 
tribution of fluid and solid volume in the interstitium. Therefore, the initial di- 
latation of the network is zero, i.e., 

e(r, 0+) = 0. (3.4) 

Generally the pressure or flow at the boundary r = a is a time-varying function, 
e.g., 

P(a, t) = f(t) or Qh, 0 = g(t). (3.5) 

4. Infusion from a Constant Pressure Source into Tissue 
Imagine that the small spherical cavity of radius a (as shown in Fig. l), cored 

from the tissue, is maintained at a constant pressure, PO. In the steady-state, the 
dependent variables are all independent of time; the continuity equation, Eq. 
(2.5), therefore becomes 

jji (r”VJ = 0 or v, = $7 

where B is an unknown constant. Integrating Darcy’s law, (2.6), with this velocity 
profile, 

P(r)=fB+C 
Kr . 

The pore pressure vanishes infinitely far from the source, so that 

P(r) = cf b. 

For P(a) = PO, the dimensionless pressure distribution is given by 

(4.3) 

This solution, which satisfies Laplace’s equation [13], shows that the excess pore 
pressure decays rapidly within a few cavity diameters from the infusion site. Figure 
2 is a plot of pressure vs radial distance. The steady-state pressure distribution 
is identical for gray and white matter. 

To find the steady-state displacement, we return to the mechanical equilibrium 
equation in the radial direction, Eq. (2.3), and Eq. (4.4): 

(4.5) 
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r/a 
FIG. 2. The steady-state pressure, P(r), vs dimensionless radius, r/a, in gray matter for a constant 

pressure infusion. 

Its particular and homogeneous solutions add up to 

u,(r) = 
POa D 

2(2G + X) + 7 
+ Cr. 

With no contact stress on the elastic network at the cavity interface, and far from 
the cavity 

(2G+A)z+ +=O atr = aandr = 03. 

Therefore, the steady-state displacement is 

u,(r) = p&J 
4G(2G + A)r 

2 (2Gr’ + Au’) = a 2(22+ *) (1 + $($). (4.8) 

0.005 - 

0.004 

u&r) 
0.003 

cm ::::; \ 

o- 
1 2 3 4 5 

r/a 
FIG. 3. The steady-state tissue displacement, u,(r), vs r/a in gray matter for a constant pressure 

infusion. 
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TABLE 1 
PROPOSED MATERIAL PARAMETERS FOR GRAY AND WHITE MATTER 

Infusion parameters 
PO = 6664 
Q. = lo-’ 
a = 0.03 
R, = 2 
D = lo-’ 

Gray matter 
G = 2 x lo4 
A=9X105 
K = 5 x 1o-9 
f = 0.2 

1291 

White matter 
G = 9 x l@ 
A = 4 x 105 
K = 7.5 x 10-9 
f = 0.2 

1291 

Infusion pressure 
Infusion flow rate 
Radius of spherical cavity 
Radius of tissue sample 
Solute diffusivity 

Shear modulus 
Lame constant 
Permeability 
Pore fraction 

Shear modulus 
Lame constant 
Permeability 
Pore fraction 

dynes/cm’ 
cm’/sec 
cm 
cm 
cm’/sec 

dynes/cm’ 
dynes/cm’ 
cm4/dynes-set 
dimensionless 

dynes/ cm’ 
dynes/cm’ 
cm4/dynes-set 
dimensionless 

Figure 3 shows the steady-state radial network displacement, u,(r), as a function 
of normalized radial distance, r/a, using parameters for gray matter given in Table 
1. In soft gels [28] and brain tissue [5-81 it is assumed that G << A. In this limit, 
the displacement has a l/r2 dependence, as seen in Eq. (4.8). Since the radial 
strain, au,/&, is negative, the tissue is in radial compression. The normal longi- 
tudinal and latitudinal strain, u,/r, is positive, so that the tissue is in tension in 
these directions. 

Since the network velocity is zero in the steady-state, using (4.4) and (4.1), the 
fluid velocity in the tissue is 

Like displacement, fluid velocity has a l/r2 dependence. Figure 4 shows the steady- 
state radial fluid velocity as a function of normalized radial distance, using pa- 
rameters for gray matter given in Table 1. 

The volume flow rate into the cavity, Q(a), is deduced from the continuity 
equation as 

Q(u) = f v,(u) ‘bra* = 47TlZKPo. 

We define the hydraulic resistance of the tissue, R, as the pressure in the cavity 
divided by the infused volume flow rate: 

This result suggests a simple experiment to determine hydraulic conductivity of 
the matrix, K, by simultaneously measuring Q(u) and P,,. Data plotted as 
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0.01 
1 

0.008 - 

V 0.006 - 

cm 
iii 0.004 - 

r/a 
FIG. 4. The steady-state interstitial fluid velocity distribution, V,(r), vs r/a in gray matter for a 

constant pressure infusion. 

Q(a)/(47ra) vs PO should fit a line passing through the origin, the slope of which 
is K. 

5. Infusion from a Constant Flow Source 
Imagine that the tissue is unconstrained and infused from a constant flow source, 
QO. The continuity equation becomes 

-$ i (r’Vr) = 0 or V,(r) = $ 

where B is a constant that is determined from the boundary condition 

Vr(4 = sf- 

Since the first and second equations must be simultaneously satisfied, 

vrw = & 

Integrating Darcy’s law using this velocity distribution, we obtain 

P(r) = g + c. 

In order for the pressure to vanish at r = 00, 

P(r) = p&. 

(5.1) 

(5.2) 

P-3) 

(5.4) 

(5.5) 

Figure 5 is a plot of Z’(r) vs r, Eq. (5.5), using parameters for gray matter in 
Table 1. The pressure distribution depends upon permeability. 

The steady-state infusion pressure in the cavity is 
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dynes 

cm2 

4 6 8 10 

r/a 
FIG. 5. The steady-state pressure, P(r), vs r/a, in gray matter for a constant flow-rate infusion. 

P(a) = -&f&Y 

and the resistance is now given by 

1 P(a) R=-=-. 
4TUK Q. ’ 

(5.6) 

(5.7) 

therefore, a constant flow infusion also can be used to estimate K. 

To find the steady-state displacement, we return to the mechanical equilibrium 
equation for the radial direction, Eq. (2.3), and Eq. (5.5): 

The sum of its particular and homogeneous solutions is 

Qo D u,(r) = jj-& + r' + cr. 

(5.8) 

With no contact stress on the boundaries, Eq. (4.7) applies, so that the steady- 
state displacement distribution is 

49 = ” (2Gr2+ho2)=&(l+$(~)i). 
161rcGr2 

(5.10) 

Figure 6 is a plot of u,(r) vs r/a for parameters given in Table 1. Again, 
displacement depends upon the material parameters. 

6. Step Infusion from a Pressure Source 

Now suppose that the pressure in the cavity suddenly jumps from zero to PO 
(i.e., P(a, t) = PO H(t), where H(t) is the unit step function). To find the response 
of the tissue, we integrate the continuity equation, Eq. (2.5), observing that 
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0.005 - 

0.004 . 

+-(t-) 0.003. 

cm 
0.002 ’ 

0.001 . 

0 .---.----.---... 
1 2 3 4 5 

r/a 
FIG. 6. The steady-state tissue displacement, u,(r), vs r/a in gray matter for a constant flow-rate 

infusion. 

(6.1) 

Eliminating V, from above using the equation of motion, Eq. (2.3), and Darcy’s 
law, (2.6), we obtain 

where B(t) must be>determined from initial and boundary conditions. 
During the initial instant, t = O+, the dilatation of the tissue is zero, as in Eq. 

(3.4); therefore, no fluid enters, leaves, or redistributes itself within the tissue. 
From Eq. (2.2), 

r2 u,(r,O+) = A or u,(r,O+) = $,- (6.3) 

Because the dilatation is zero everywhere, Eq. (2.3) implies that the pressure 
gradient is also zero; therefore, the initial pressure, P(r,O+) = P(O+), is uniform 
within the tissue. The value of P(O+) is also unknown. Two initial conditions 
come from the constitutive law, Eq. (1.1): 

2G 2 (a,O+) + A - P(o+) = - PO, 

and 

2G 2 (00,O+) + it 

The conditions are used to calculate u,(r,O+) and P(O+) simultaneously: 

(6.4) 

u,(r,O+) = -$ 5 
0 

and P(o+) = 0. 
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The resulting initial internal pressure is zero; the initial displacement field is that 
of an incompressible, elastic solid subjected to a compressive contact pressure, 
-PO. 

We use the Laplace transform of Eq. (6.2) to obtain a forced, modified spherical 
Bessel equation, 

2 

r2$ (I-J) + 2 r 2 (r,s) - 
( ) 
2 + s r2 r ) 

+) =: (;;yif~; with 

Its analytic solution is 

u,(r,s) = 5 (-(Y(S) + C(s)(sinh r - r cash r) 

+ D(s)(cosh r - r sinh r)), 

using the substitution 

(6.6) 

(6.7) 

(6.8) 

Darcy’s law, (2.6) and the equation of continuity, (6.1), relate the pressure 
gradient and the velocity of the network: 

K r2 
aP 
s (r,t) = -B(t) + r2 2. 

The Laplace transform of this expression, 

K r2 $ (4 = -B(s) + r2 (s u,(r,s) - u,(r,O+)), (6.10) 

can be integrated with respect to r, simplifying to 

P(r,s) = - v (C(s) sinh(r$) + D(s) cosh(r\/;;)) + E(s), (6.11) 

or 

P(r,s) = (2G + A) e(r,s) + E(s), 

where E(s) is a constant of integration. 
Boundary conditions on the interstitial fluid are 

P(a,s) = 3 and P(a,s) = 0. 

Boundary conditions on the network are 

(6.12) 

(6.13) 

(2G + A) $(r,s) + A v = 0 for r = a and r = 00, (6.14) 

i.e., there is no traction on the cavity or at infinity. These four boundary conditions 
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P 

dynes 

cm 2 

10 

FIG. 7. The tissue pressure distribution, P(r, t), in gray matter vs r/a and dimensionless 
W/c). 

allow us to solve for the four unknowns C(S), D(S), E(s), and B(s), that are used 
to calculate the inverse Laplace transforms of the dependent variables P(r,s), 
V&P), e(r,s), and 4r,s). 

The resulting pressure distribution for r 2 a is 

P(r,t) = PO f 1 - erf 
( (%)I* 

(6.15) 

It is plotted in Fig. 7 for gray matter. 
This closed-form solution suggests a characteristic time constant for diffusion 

of the dilatation field in an infinite medium, 

2a ‘1 
r,= - -. 0 ?T c 

(6.16) 

Using Darcy’s law, Eq. (2.6), and Eqs. (6.15) and (6.1), we obtain the resulting 
velocity distribution for t 3 0 and r 2 u: 

Vr(r,O = $$ (v (e&(z) 

+ &exp(-(‘,i u)2)) + (I + --$). (6.17) 

It is plotted in Fig. 8 as a function of time and distance from the core. Initially, 
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cm 
- 
set 

10 
FIG. 8. The interstitial velocity distribution, V,(r, t), in gray matter vs r/a and t/(a’/c). 

the velocity is large at the fluid/tissue interface, but fluid penetrates only a small 
distance into the tissue’s superficial layers. After a few time constants, the steady- 
state profile evolves. 

We can calculate the dilatation from Eqs. (6.7), (6.8) and (2.2): 

- C(S) sinh 
s 

r 
J 

- - D(s) cash r 
s 

C 
e(r,s) = 

J 
- 
C 

r 
(6.18) 

This expression satisfies the Laplace-transformed consolidation equation, Eq. 
(2.7), assuming that the initial dilatation is zero (as in Eq. (6.3)). Its inverse 
Laplace transform is 

e(r,t) = zs(l - -f(z)). (6.19) 

The dilatation, calculated with parameters for gray matter, is shown in Fig. 9. 
The dilatation is positive, indicating a net expansion of tissue volume. 

It is easy to obtain the response to an impulse in cavity pressure by taking the 
time derivatives of the solutions above. For instance, the resulting pressure dis- 
tribution is given by 
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e 

10 

FIG. 9. The tissue dilatation, e(r, t), in gray matter vs r/a and t/(a’/c). 

P(r,t) = PO 
a (r - a) K 

2433 
exp (-“,, aJ2). (6.20) 

7. Step Infusion from a Constant Flow Source 
Suppose that a step infusion, Q(a, t) = Q0 H(t), is applied to the cavity using 

a flow source. Then the derivations follow the same steps as before, until we 
apply boundary conditions. The total stress boundary conditions from Eq. (1.1) 
are 

2G $ (r,O+) + &i$$; - P(O+) = 0 forr = aandr = 00. (7-l) 

These conditions are used to calculate u,(r,O’) and P(O+) simultaneously: 

u,(r,O+) = P(O+) = 0. (7.2) 

To find the displacement, we take the Laplace transform of Eq. (6.2), thereby 
obtaining the same forced, modified spherical Bessel equation as in Eq. (6.6), 
with 

Its analytic solution is the same as in Eqs. (6.7) and 6.8). 
Darcy’s law, (2.6), and the equation of continuity, (6.1), are used to relate the 

pressure gradient and the interstitial velocity: 
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1-f --K - i 1 f 
r2 g(r,t) = -B(t) + r2 V,(r,t). 

Its Laplace transform is, 

(7.4) 

(75) 

One boundary condition on the interstitial fluid at r = a comes from imposing 
a step in flow at the inner boundary: 

a2 $(u,s, = -B(s) + a2 (7.6) 

The other boundary condition at r = 00 is 

P(m,s) = 0. (7.7) 

The contact stress on the elastic network is zero, as in Eq. (6.14). Integrating 
the pressure gradient as before, we obtain Eq. (6.11). Therefore, we can solve 
Eqs. (7.6), (7.7) and (6.14) for the unknowns C(s), D(s), E(s), and B(s). The 
resulting transformed expressions are more difficult to invert; however, numerical 
solutions, e.g., for the dilatation, can be obtained from 

G Qo a2 e(r,t) = - - ( - - - 
2G+hIrra2 4GK 

1 

%K 

(7 - PI’ + (3 P 

8. Transport and Consolidation in Tissue 

Tissue dilatation has already been calculated. Now we relate it to interstitial 
volume. If a volume of fluid, SV,, is infused into tissue with an initial volume of 
V,, it produces a tissue volume change, SV,. For small deformations, the dila- 
tation of the tissue is related to the initial tissue volume and its volume increment 
bY 

SVT e=-. 
VW (8.1) 

Since the solid network is assumed to be composed of impermeable, incompressible 
constituents such as cells and polymer, and since the infusate is incompressible, 
this increase in fluid volume equals the increase in total tissue volume, i.e., 

sv, = sv,. (8.2) 

Since by definition, f V, = Vor, 

SvT e=-= 

VW 
f$. (8.3) 

Therefore, the change in interstitial fluid volume per unit undeformed interstitial 
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FIG. 

10 

10. The fractional change in gray matter interstitial volume, W,/V, (r, t), vs r/a and w/4. 

fluid volume (fractional change in interstitial volume) is greater than the change 
in tissue volume per unit undeformed tissue volume (fractional change in tissue 
volume) by a factor of the inverse porosity, l/f. Typically for white and gray 
matter, l/f = l/O.2 = 5 [29], so that the fractional interstitial fluid volume 
increases fivefold for a onefold increase in fractional network volume. For ex- 
ample, an infusion that increases tissue volume by only 5% (which is within the 
limits of the linear consolidation theory) increases interstitial volume by 25%! A 
plot of the fractional change in interstitial volume, 6V,/V,,, from Eq. (8.3), is 
given for gray matter in Fig. 10. 

For small deformations, 6VT = VT - V,, so that the relationship between 
deformed tissue volume, VT, and initial undeformed tissue volume is 

v, = CT (1 + 4, (8.4) 

where we have used Eq. (8.3). For small deformations, SV, = V, - Vor, the 
relationship between the fluid volume of the deformed and undeformed tissue, 
V, and Van is 

v, = v,, 1 + 5 
i ) f’ (8.5) 

Again, the amplification factor l/f appears. 
The transport equation for a chemical species in the extracellular space of a 

porous, nondeformable medium is 
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g = D,ff vc - v * (V C) + c#&(C, P, t) - c&(C, P, t), @-6) 

where C is the local concentration of the solute. The solute flux is ascribed to 
diffusive and advective transport, consumption, and production. The advective 
velocity, V, is the same as the local interstitial velocity given in Eq. (1.9). Source 
and sink terms, $J~(C, P, t) and &(C, P, t), respectively, represent the removal 
and conversion of the solute and may depend upon pressure, concentration, or 
time. Deff, the effective diffusivity of the solute in the interstitial space, is assumed 
to be independent of position. 

Equation (8.6) does not apply to a swelling network because its underlying 
assumption that the elemental volume, dx dy dz, is fixed in space is not satisfied. 
To include swelling induced by infusion, we require 

C=C’+y 1+e, ( ) f (8.7) 

where C’ is the interstitial concentration in the deformed network. Then the 
equation becomes 

ac' I+! 
(,, J = yvc/l+;)) +Def~c~+;) 

+ &(C’ 1 + ; ) P, t) - +r(c’ 1 + ; ) P, t). 63.8) 

This transport equation explicitly includes tissue dilatation. Changes in inter- 
stitial volume during infusion affect transport of solutes within the interstitium 
by: (i) altering local bulk flow (advection), (ii) diluting the solute, (iii) altering 
reaction kinetics (such as binding), and (iv) reducing concentration gradients 
(diffusion). Other potentially important effects not included here are changes in 
solute diffusivity or material constants of the tissue (such as the permeability, 
shear modulus, or Lame constant) caused by swelling. It should also be noted 
that when e = 0, the transport equation reduces to Eq. (8.6). 

DISCUSSION 

The time of mechanical relaxation of the pressure, displacement, velocity, and 
dilatation fields arises naturally when tissue deformation is seen as a diffusive 
process. By analogy with other consolidation problems [9,11,12], the characteristic 
consolidation time constant for a finite spherical shell of brain tissue is 7c - (R, 
- u)~/c, where R, is the shell’s outer radius. Time constants for diffusion, ad- 
vection, and consolidation are given in Table 2, using the proposed parameters 
for gray and white matter given in Table 1 and assuming R, = 2 cm. Peclet 
numbers near the cavity and at the periphery are calculated. Large Peclet numbers 
for gray and white matter near the cavity show that bulk solute transport dominates 
diffusive transport there, in accord with the estimates of Morrison et al. [l]. 
Interestingly, convective transport still dominates at the periphery, although dif- 
fusion is relatively more important there. Another group, AS, which is the di- 
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TABLE 2 
TIME CONSTANTS FOR DIFFERENT PHYSICAL AND CHEMICAL PR~EESSES 

Process Time constant 
Gray matter White matter 

(se4 (W 

Consolidation 

Diffusion 

Advection (periphery) 

Advection (cavity) 

2 x 10’ 

1.5 x lo6 

fa’ 7, = - 
KPo 

5 

2 x 10’ 

1 x 106 

mensionless ratio of swelling and advective time constants, predicts whether the 
initial or the steady-state conditions dictate the velocity distribution used in the 
transport equation. 

These analytic solutions for steady and step infusions also can be used to assess 
the credibility of published estimates of material properties of gray and white 
matter. For instance, Nagashima cites E, = 30 dynes/cm2 and V~ = 0.4999 in 
gray matter, and E,., = 3 dynes/cm2 and V, = 0.4999 for white matter [5]. These 
material constants correspond to G, = 10 dynes/cm2 and A, = 50,000 dynes/cm2 
for gray matter, and G, = 1.0 dynes/cm2 and A, = 5000 dynes/cm2 for white 
matter. When these parameters are used to describe the response of brain tissue 
to a step-infusion of 6664 dynes/cm2 (approximately 5 mm Hg), one predicts 
initial cavity displacements, P,+z/(4G), that are many times the initial radius. It 
is likely that Nagashima’s G, and G, are too small. They should be on the order 
of 7000 dynes/cm2. Perhaps the cited G and A are not the “final” equilibrium 

TABLE 3 
USEFUL DIMENSIONLESS GROUPS 

Peclet Number (per.) 

Peclet Number (cav.) 

Dimensionless 

aKPo 

Pe = (R, -a)Df 

Pe = ~po(Ro --a)* 
Da’f 

Gray Matter White Matter 

25 38 

7 x 106 1 x 10’ 

Advect./Swell. (per.) GKP, 

AS = (R, -a)cf 

5 x 1o-4 1 x 10-3 

Advect./Swell. (cav.) AS = ~po(Ro -a)’ 
ca2f 

152 343 
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moduli [9,11,12,14] required in the Biot model. Hydraulic “conductivity” is given 
as 10-l’ cm3/dynes-set in gray matter and lo-’ cm3/dynes-set in white matter 
[5]. It is not clear how to convert them to the Darcy permeability, K, that is, in 
units of cm4/dynes-sec. Unfortunately, it is difficult to resolve these disagreements 
because there are few published measurements of material constants of brain 
tissue. 

To address this problem, it is possible to estimate material constants of poro- 
elastic tissue with this model using time-varying infusion protocols. If x2 is the 
weighted sum of squares of the deviations between iV x M experimental and 
model-generated pressure data points, i.e., 

x2 = i 5 (~nmdel(~i~ lj) - Pexperiment(ri~ tj))' 
2 , 

i=l j=l aij 
(9.1) 

where uij2 are the error variances, then we can estimate optimal material param- 
eters, K,~~ Aopt, and G,, by minimizing x2 with respect to K, h, and G. This method 
was used recently to estimate material constants of hydrogels [30]. 

Taylor et al. [2,3] used tissue compliance to relate changes in interstitial pressure 
to changes in volume rather than the equations of motion of the tissue, Eq. (1.5) 
and boundary conditions for the pressure and contact stress, e.g., Eqs. (3.1)- 
(4)-Newton’s second and third laws. The utility of the Taylor model appears to 
be limited to cases in which there is no relative flow of interstitial fluid and the 
elastic network, and in which the pressure and contact stress are zero at all 
boundaries. Certainly, changes in CSF pressure or contact forces exerted by the 
skull cannot be described. Modeling in vitro experiments in which the tissue sample 
is held in a fixture is also problematic. 

However, an interesting connection can be made between the Taylor and the 
Biot models. Specific tissue compliance, C, [2,3], can be determined from the 
Biot model using analytic expressions relating pressure and dilatation, e.g., Eq. 
(6.12): 

ct=$=&. (9.2) 

Here we see that C, is the reciprocal effective modulus of the elastic network 
(e.g., as in Eq. (1.8)). Generally, specific tissue compliance depends on initial 
and boundary conditions [14], tissue geometry and composition, and the form of 
the constitutive law, so that C, is not a material property. A more general rela- 
tionship between e and P for the linear poroelastic model is given in Eq. (1.8). 
Inclusion of vascular compliance would also change the form of Eq. (9.2). 

The present model does not describe fluid leakage around a needle that is used 
to deliver fluid to the cavity. When the infusion pressure is high enough, a low- 
impedance pathway may open along the needle shaft, shunting fluid from the 
cavity. If the cavity were formed by a needle tip, then it may be tear-shaped, not 
spherical. To assess the validity of the assumption of spherical symmetry and 
small deformations, a three-dimensional, finite element analysis and careful ex- 
periments need to be performed. This is beyond the scope of the present paper. 
Nonetheless, the analytical solutions presented above should predict the correct 
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qualitative behavior for the assumed material properties and can be used to 
validate predictions obtained using numerical methods. 

CONCLUDING REMARKS 

Time-varying flow and pressure sources can be considered in the future. En- 
hanced mass transfer may occur by superposing AC and DC pressure or flow 
wave forms. It will also be interesting to predict the transport of a solute following 
the cessation of fluid infusion and to consider the case in which tissue is attached 
(glued) to the needle. In this instance, the local tissue displacement at the cav- 
ity/tissue interface is zero, although the fluid velocity there is not. This case is 
not considered here because it is less clinically relevant and would make this 
paper unreasonably long. 

Incorporating empirically derived relationships between hydraulic permeability 
and pore fraction, ~0, should extend the applicability of this model. Another 
promising extension would be to incorporate the anisotropy of white matter. 
Finally, swelling induced by infusion may affect the distribution of other infused 
agents such as proteins, nucleic acids, viruses, and cells. 
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